04-02 Tuto VENSIM

source : https://www.vensim.com/documentation/fn_get_123_data.html

<u>Créer un modèle avec VENSIM : PAS à PAS :</u> → Exemple de la modélisation d'un réservoir de récupération d'eau de pluie.

<u>**1**</u> <u>**créer un nouveau modèle**</u>, rentrer les paramètres voulus(temps 0, temps final, pas de la simulation et unités de temps...), on peut y revenir par la suite avec l'onglet Model//Settings-<u> \rightarrow Le niveau de mon</u> <u>réservoir d'eau d'arrosage</u>

<u>2- Placer les réservoirs(</u> S) → Niveau d'eau du réservoir.... Potager

<u>3-les flux qui les unissent(</u> =)- → Le réservoir reçoit l'eau de pluie du toit de la maison, alimente le potager, subit une évaporation(faudrait que je le couvre d'ailleurs, et il y a une fuiteà la base du régulateur d'arrosage(à réparer de toute urgence!!!)</u>

4- Positionner les éléments pour avoir une bonne visibilité(🔥), pour les flux, jouer sur 🖂

<u>5- Paramétrer les réservoirs et les flux, utiliser l'outil équation ស et sélectionner l'élément choisi.</u>										
<u>Les flux :</u>	-Varia Name	ble Information évaporation	<u>Les réservoirs :</u>	Varia Name	ble In Nivea	formation u d'eau du r	éservoir			
	Type	Constant	✓ :	Type	Level	· · ·	Sub-Type		~	
	Units	L⁄jour		Units	L			~ Check	Units	
	Group			Group			· · · · · · · · · · · · · · · · · · ·	Min 🗌	Max	
	Equat	ions 0.3		Equat	ions	arrivée d'ea	au de pluie	- -évaporatio	on-fuite	
	=			= INTE	G (• • •			
\rightarrow l'évaporation sera constante de 0,3L/j				Initia Value	1	0				

→ Le réservoir contient 0L au jour 0 et son niveau est la résultante des entrées et des sorties(*se crée au fur et à mesure des branchements des flux mais à vérifier tout de même*)

Si les flux sont constants, indépendants des phénomènes extérieurs, on peut s'arrêter là et simuler. C'est assez simpliste mais suffisant parfois. Voir les « éventuellement » si l'on veut rendre le modèle plus réaliste.

6. Lancer la modèle pour une visualization simple ou pour modifier les flux en temps
<u>o- Lancer le modele</u> · <u>pour une visianisation simple ou</u> · <u>pour modifier les flux en temps</u>
<u>réel(puissant).</u>
7- afficher le résultat in forme araphique//ou III en tableau que l'on neut exporter après avoir
<u>- uprener ic resultar</u> <u>- in abieut que r on peut exporter</u> , apres avoir
<u>éventuellement sélectionné 🔥 quel(s) élément(s) on veut suivre.</u>

<u>8- On peut simuler plein de configuration avec des valeurs choises en changeant le nom dans « run name » en lançant le modèle après avoir choisi un réservoir....</u>

<u>9- Mise en « beauté » : un clic droit sur les éléments sélectionnés permet d'en modifier le visuel.</u>

ev A-créer des rapports de cause à effet \rightarrow on pourrait poser le principe que la fuite a une importance proportionnelle au volume du réservoir disons 0,01*volume du réservoir par mois.

<u>evB-créer des variables</u> \frown <u>avec la mise en forme</u> <u>voulue(clic droit sur la variable)-</u> \rightarrow Inventer une variable canicule avec laquelle on pourra jouer, on la définit à 1 en adaptant les équations des flux concerné, on pourra la monter jusqu'à 7(arbitraire!)

Canicule

2.182

canicule

ev C- exporter les données chiffrés stockées dans un tableur. Bien technique, passer par GET DATA .. Pas supporté par la version non payante de VENSIM MAIS très prometteur !!

Edit: Précipitations							
Variable Information	Edit a Different Variable						
Name Précipitations	All v arrivée d'eau de pluie 🔥						
Type 🗸 Sub-Type 🗸	Search Model évaporation						
Units mm Check Hnits Supplementary	New Variable FINAL TIME						
	Back to Prior Edit INITIAL TIME						
Groupmodele giptic Hin Hax	Jump to Hilite Niveau d'eau du réservoir 👻						
Equations := GET DIRECT DATA('S.xlsx', 'Feuille1', 'A', 'B2')	~						

	A	В	С	
1	Mois	Température(en °C)	Pluviométrie(en mm)	
2	1	4	58	
3	2	4,5	50	
4	3	7	53	
5	4	12	56	
6	5	14	70	
7	6	18	64	
8	7	20	60	
9	8	19	60	
10	9	17	48	
11	10	13	64	
12	11	8	63	
13	12	5	70	
14	13	4	58	
15	14	4,5	50	
16	15	7	53	
17	16	12	56	
18	17	14	70	
19	18	18	64	
20	19	20	60	
21	20	19	60	
22	21	17	48	
23	22	13	64	
24	23	8	63	
25	24	5	70	
26	25	4	58	
27	26	4,5	50	
28	27	7	53	
29	28	12	56	
30	29	14	70	
31	30	18	64	
32	31	20	60	
33	32	19	60	
34	33	17	48	
35	34	13	64	
36	35	8	63	
37	36	5	70	
38	31	4	58	
39	38	4,5	50	
40	39	1	53	
41	40	12	56	
17	10	1 1/1	1 /01	